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Ssome bounds on balanced block designs

Sanpei Kageyama and Takumi Tsuji

Hiroshima University

Abstract

Bounds on the latent root of the C-matrix and the number
of blocks for a variance-balanced block design are given.
~ These results include the well known results as special

cases.




1)

Some bounds on balanced block designs

2)

Sanpei Kageyama and Takumi Tsuji

L. Intreduction

Consider v treatments arranged in b blocks with the j-th block
being of size kj (j = 1,2,-++,b) in a block design with incidence
matrix N = nnij" such that the i-th treatment occurs r; times (i = 1,
2,*++,v) and the i-th treatment occurs in the j-th block nij times,
w?ere nij can take any of the values, 0, 1, 2,+++, n-1. Such a design
is called an n-ary block design. If n = 2, the design is called a
binary block design. Let Ti be the total yield for the i-th treatment
and Bj that for the j-th block. On writing T' = (Tl,---,Tv) and
B (Bl,---,Bb) in matrix notation, the adjusted intrablock normal
equations for estimating the vector of treatment effects t can be

written under the usual assumptions as

1) This paper was prepared in part while the author was visiting the
Department of Mathematics, University of Illinois at Chicaco
Circle, Chicago, Illinois 60680,

2) Research partially supported by Grant No. AFOSR 76-3050A.




where t is the estimate of t,

Lyt Y ‘1}

Q = T - N diag{k;—l,kz ’ ® lkb

B (

_1.
21

Q
Il

! cot| ot 8 _ . =1
diag{r,,r,, ,rv} N dlag{kl s

and diag stands for a diagonal matrix and A' is the transpose of the
matrix A, and further let diag{rl,rz,---,rv} = Dr and diag{kl,kz,--°,
kb} = Dk' The matrix C is well known as the C-matrix of a block design.

Since each row (or column) of C adds up to zero, the rank of C
is at most v-1, and (v_l/z,v—l/z,---,v_l/z) is the latent vector
corresponding to the zero root. If the rank of C is v-1, the désign
is said to be connected (cf. [3]). We shall deal only with connected
designs throughout this paper.

A block design is said to be balanced if every elementary contrast
of treatments is estimated with the same variance (cf. [11]). 1In this
sense, this design is also called a variance-balanced block (BB) design.

Furthermore, it is knewn (ct. [5), [6l. (7], 18}, [91, [10], [(L1l]) Ehat

an n-ary BB design with parameters v (2 2), b (> 0), r, (> 0), kj (2 2)

(L = 1,2,%**,v3 3= 1,2,°**,b} can be given by an incidence matrix N

satisfying

“L

(C =) Dr-N Dk

N' = p{IV - (l/v)Gv} ’

s v _® b s Vo2 _ . ; ) s
where p = {Eizlri )j:l(l/kj)fi=lnij}/(v 1), I, is the unit matrix

of order v, GV = vav and Eixs is an 2 xs matrix with positive unit

; ; Y
elements everywhere. Note that for a binary BB design, p = (21=lri_
/(v=1).




The literature of block designs contains many articles exclusively

related to BB designs. The interested reader can refer, for example,
to 51, [6l, 121, [81, [91, [Ho]l and [11] for details. Kagey;ma 71,
[8] and [9] has extensively dealt with combinatorial properties and
constructions of binary BB designs. In this paper, for an n-ary BB
design some bounds on the latent root of the C-matrix and the number :
of blocks are given. These results include the results well known from
various aspects of experimental designs.

Finally, since a design uniquely determines its incidence matrix

and vice versa, both a design and its incidence matrix are denoted by

the same symbol throughout this paper.

2. Bounds on the latent root and the number of blocks
Let rearrange blocks of a block design N as N = [Nl :N2], where
Ni's (i = 1,2) consist of some blocks. Then the C-matrix of N can

be shown to be

where Ci's (i = 1,2) are the C-matrices of Ni's. Hence, for example,

if Cl = 0, then N, does not influence discussions on the C-matrix of

i
the design N. Hereinafter we will exclude from our consideration a
collection of blocks whose C-matrix is a zero matrix. This collection t 8

of blocks can be characterized as follows.

Lemma A. The C-matrix of a collection of some blocks is a zero

matrix if and only if each block contains at most only one treatment

a (> 0) times.




Proof. For a collection of some blocks, let the respective

numbers of treatments and blocks be v* and b*, and further let the
replication numbers of treatments and the sizes of blocks be r; v

(i = 1,2,ss¢ %) and k; (j = 1,2,+°+,b*), respectively. We denote

Il

the incidence matrix of a collection of b* blocks by N* Unijﬂ

diag{ri,rg,

,kg;l}N*' il o W is equivalent to

(1 = 1,2,¢¢°,v*; j =1,2,+++,b*). (Necessity part): C

cee,rk,} - N diag{ki_l,kz-l,---

: 3 : -1 - L S :
dlag{ri,rﬁ,--~,r;*; = N* %1ag{ki r k3 l,--~,kg*L}N* L wplch is
expressed as

B
(2.1) =8 = niy/k? for all i@ = 1,2,+%» 9%,

s o el

* ~

(2.2} 0 = ¥ n; 5y g/k3 for all i, 1" (L #4L") = 1,2,°~~,v*, -

j=1 2
where O

e is an s ¥ £t matrix whose elements are all zero. Since kg >0

for all j, (2.2) yields ng = @ for all

el vt = Mipip
i, i' (i # i') which imply that each block contains at most only one -
treatment o times for some o (> 0). (Sufficiency part): It obviously

follows from the assumption that relations (2.1) and (2.2) holds.

Then we have C = 2 SP——

Remark 2.1. From Lemma A, each block of a BB design which will

be considered here contains at least two distinct treatments.

The latent roots of the C-matrix play an important role in

problems concerning efficiency and analysis for block designs. Espe-

. sa ’ . . N
cially, as a bound on the latent root, 6, ¥6r the C-matrix, it 1s known -




(cf. [7], [2]) that 8 ¢ max E. for a general block design. The
l<igv

problem on an improvement of this bound is first considered in this
section for the following two cases.

For the convenience of notation, we further let max r. = max r.,
I£isy

min = min r., max k. = max k. and min k. = min k..
1<i<y 7 lg5en O et A= )

2.1. For binary BB designs
We first obtain the following bound on the latent root of the

C-matrix.

Theorem 2.1.1. For a binary BB design with parameters v, b, r;

4

k: €1 = 1,2,5%%,9; 9 = L,;2,4=,;b} in which € = o{Iv - (l/v)GV},

holds.

Proof. Comparing any diagonal element of the C-matrix (= D.

-— —l L —_ 7 10 .
NDk N p{Iv (l/V)GV}) yields:
n
1 L ib
e ..(',(l___) = 4 eee 4 __— -
a v kl kb
g niy + e + Ny
= max K.
A

r, / (max kj) - i = L2,V

1l
—
N
-

.

.

.
<
.

{v/(v—l)}ri{l- 1/ (max kj)} for all i

which implies p

A




i
‘

Henze we get

v - 1 !
(2.3) p < ogopmin ro) (1 532—23) . . ) |
On the other hand,
/
. R n.
1 b L
0 e

A

min K, T e El)

1

which yields p 2 {v/(v—l)}ri{l-l/(min kj)} for zil i = 1,2,%%+,V.

Hence we get

v
v-1

N T
min kj '

2.4 p > (max ri)(l -

Thus, relations (2.3) and (2.4) imply the required result.

Remark 2.2. The upper bound on p in Theorem 2.l1.1 is attainable
if the design is equiblock-sized (in which case, it is obvious that

the design is a balanced incomplete block (BIB) design).

For a binary BB design we have the exact value of p, i.e.,
p = (Eiilri-b)/(v-l). In this sense, the very bound of Theorem
2.1.1 may make no sense practically. However, Theorem 2.1.1 yields
a strong restriction on replication numbers r. (i =1,2,°°*,v) as {

follows. }

Corollary 2.1.1. For a binary BB design with parameters v, b, ry |

and kj for i = 1,2,***,v and § = 1,2,*%*,b,




min r. max k. min k.—1
et > 1) ( )
max r. = max k.-1% min K. N
J g
Remark 2.3. Since min kj > 2 and v > max kj’ Corollary 2.1 % "
further implies that
min r 5 max k. e
max r, = 2 (max kj—l) = 2(v=1) ° '

Since v > max kj for a binary design, Theorem 2.1.1 yields

Corollary 2.1.2. For a binary BB design with parameters v, b, r,

and kj (i = 15,2 ,2° 2,57 ] = 1,2, b} in which € = p{IV - (l/v)Gv},
p < min r, .

This upper bound is not superior to the upper bound in Theorem
2.1.1. When v = max kj' both the bounds are the same. However, the
bound in Corollary 2.1.2 is very simple and practical. Thus, this

bound appears to be worth describing.

2.2. For n-ary BB designs
We here consider bounds on the latent root of the C-matrix for
an n-ary BB design. First of all, the bound &n Corollary 2.1.2 is not
generally valid for an n-ary BB design. For example, we can produce a
BB design with parameters v = 3, b = 5, r, = 4 or 9, kj = 4. or 6,

whose incidence matrix is given by

DD N0 -
3300 3 and C = (9/2){13 - (1/3)G3} .
Do 3 33 ] "




In this case, p = 9/2 > min r, = 4.

'We then describe an upper bound on the latent root of the C-matrix

for an n-ary BB design.

Theorem 2.2.1. For an n-ary BB design with parameters v, b, T

kj (i =1,2,+++,v; j =1,2,+++,b) in which C = p{I_ - (1/v)G } such

that Xy £ ry £ 20 21,

V -
r.+¥
k2 N 1
P g mind—5-= w15 (1 max k.0 -

Proof. An argument for the former in the proof of Theorem 2.1.1

still holds for an n-ary BB design. We then have p < {v/(v—l)}rl[l -

lN' =

1/ (max kj)]. Next, from the form of the C-matrix, i.e., Dr-ND;
= p{IV-(l/v)GV}, we get that for any column vector x,

' s el o Vs = s
x' (D -ND "N')x = px'{I_- (1/V)G Ix

which implies that, letting x' (1/V/2) (1, -1, 0,+++, 0),

b
1 1 %
Db g - e
5lry +1,) 5 {_L (n
J=1

ko)
It

2 <
S 0 o
1j 23) / J

which yields p

A

(rl-+r7)/2. Hence the proof is completed.

Remark 2.4. One of upper bounds in Theorem 2.2.1, p £ {v/(v-1)}

(min ri)[l-—l/(max kj)], attains the bound if k1 = k2 = ese = kb and i
any row (of N) in which min r, is attained is binary. ‘
Remark 2.5. From a method similar to Theorem 2.1.1, we can give

a lower bound on p as follows: p > {v/(v-1)} max [ri{l—ri/(min kj)}]
l<igv "




for an n-ary BB design. However, this bound is meaningful only if

there exists an ry such that ri < min k..

When max kj < ¥ in Theorem 2.2.1, it is clear that

1
AL (1 - max kj) '

Then we get

Corollary 2.2.1. For an n-ary BB design with parameters v, b,

Ly kj in which € = p{IV— (l/v)Gv} such that SN e £,
. ; f . V. 3
(i) TiE ) =r,, p £ mln{rl, =Tt (1 1/ (max kj))} ;
(ii) if v > max k. p < L (min r )(l--——j;——) < min F. .
= 53¢ = v-1 3 max k. = 1 r

J

Remark 2.6. Each of two conditions, ry =r and v > max k., is a

2
sufficient condition for the validity of the bound p < min r, (=r

1) -

We can give other sufficient conditions. For example, from (i) in

Corollary 2.2.1, we have only to consider a case in which the cardi-

nality of set {i: min r, is attained} is one (i.e., £y R, € v*F 2 ¥ Y-
1<i<v 0 i

In this case, as a sufficient condition for p < ry to be valid, we can

present each of the following two conditions: For a BB design N = ”nijﬂ'
(a) v nlj 2 kj for all j such that nlj > 0
P2
o P .
(b) v (jilnlj/kj) 21

As another upper bound of reflecting certain block structure, we

have for an n-ary BB design




(2.5) p £ (v max Xaaqtfitmin kK.) i
3 1<ifi'cv ai! J

where A. =3 b n..n This can be shown as follows: From Frobenius'

ii? =1 vy : : el

theorem (cf. [2], p.66), we have

)
L

(2.6) 0

v
N
5

in ¢, + (v-2)4d ,
fev 3 : ;

1

A

where Cii is the i-th diagonal element of the C-matrix and d is the

numerically largest absolute value of off-diagonal elements of C. Now,

B ¥ n. i,
Idl = masx: {_l_l}?l—l + eoe &+ ._]_2]_(_1_'12}
Igi i sw 1 b
(2.7%) < max {nilni'l L B } -
: = e min k.
1,1 J
: y (]_m,aj_\' Aii-)/(mln K]) ’
where ) =) 5 i Since c;. = p(l-1/v) and v > 2, we get (2.5)
i1t o e G B 8 S 2 < g »

from (2.6) and (2.7). However, bound (2.5) may be not relatively good
as an upper bound.

Furthermore, we can present mathematically an upper bound on o
which gives a partial improvement of Theorem 2.2.1. The following
result also plays an important role on an argument (of Section 2.3)

providing sufficient conditions for the validity of Fisher's inequality.

Theorem 2.2.2. For an n-ary BB design with parameters v, b, I

K. (1 = 1,2,%%,%;. J = 1;2,°%+,b) in which ¢ = o{Iv-(l/v)Gv},

P

A

pol




where 0o is the lecast positive root of the following polynomial of

degree v-1

(2.8) Elp) = |B, ~ pI, + (p/V)G_|
St v
(=1 v-1 v-2 2 v-2
= e ] + (=13 s 1 ryrido
i=1 1<3 '
V=33 v—3 A%
+ (=1} = ¥ Er.E ¥p hAme f o= g, e T,
v 2 ik v A2 v 2

The proof of this theorem needs some preliminary results. The

following two lemmas are available in various books on linear algebra.

Lemma 2.2.1 (cf. [1], p.75). For a real symmetric matrix A

1
o

1 ijh
=
of order v, A is positive definite if and only if :
IA(S)l > 0 for SRR e
where
g b S o SR
a'Pl o) 33 Sgpttt an, ; £
I aﬁl asz Fares ass |
Lemma 2.2.2 (cf. [l], ».117). When A is a real symmetric matrix
and B is any principal submatrix of A, the maximal latent root of A
is greater than or equal to the maximal latent root of B.
Proposition 2.2.1. There exists the least positive root (= Por
say) of £(p) im (2.8). Wi} If p < Por then Dr--pIV-!-(o/v)GV is
positive definite. (ii) 1If p = Do then Dr--va+(p/v)GV is positive -




semidefinite and sinqular. (1ii) TE p = p., then D = ol * (p/v}GE
J 0 1 v v

is not positive semidefinite.

\

|
b
g 1
Proof. Let A(°) = Dis)-pIS4-(p/v)GS for s = 1,2,++-,v which is |

Y e i i sty (88 o ne J

a principal submatrix of D va+(p/v)Gv (= ND, "N ) » where D ——dlug\r] 4
|

Eys**o,E ). Furtherx, let'f(s)(p) = IA(S)I for 8§ = 1,2,**»,v. In

particular, f(v)(p) = f(p) in (2.8). Now, consider roots of f(s)(p)

(s)

= |Dr

- p{IS-(l/v)Gg}l = 0 which also yields p # 0. Then the nonzero
roots of f(s)(p) can be shown to be equivalent to the nonzero roots of
the following equation:

-1/2 -1/2

(2.9) | (1Zp)E_ = DéS) {_ - (l/v)GS}DLS) | =0

-1/2 ~1/2

(s) 5~ (l/v)Gs}Dés) is

for s =1,2,+++,v. Furthermore, Dr

positive semidefinite. Hence its latent root, 1/p, is real and non-

; : X o el s
negative, i.e., p is a positive real number. Hence f( )

(s)
0

(p) has only

positive roots. Let p be the least positive root of f(s)(p).

Especially, péV) (= 0o+ say) is the least positive root of f(p). 1In

this case, we can show that

(L . (2) (v-1) | (V)

(2.10) Pg 2Py - Z "2 P &Py = By os
i i : (s-1)"1/2 7
This can be given as follows. In (2.9), D_ {Is_l-(l/v)Gs_l} ;
(s-1)"1/2 . (s)~1/? %
"B is obviously a principal submatrix of D, {IS-(l/v)GS}
fg) A& ; : . '
'Dr . This fact together with Lemma 2.2.2 implies that the maximal
()~ 1/2 (s)"1/2 |
latent root of Dr“ 13, = (l/v)GS}Dr is greater than or equal l
~1/2 -1/2 - I
to the maximal latent root of D_ {1,y - /viG_ D] . |
- AT -




This statement yields (2.10).
(s)

(1) since £°'(0) » 0 ana £/ (o) is a polynomial, if p < p,, then,
from the meaning of for f(s)(p) > 0 holds for s = 1,2,+++,v. Hence,
from Lemma 2.2.1, Dr--va-+(p/v)GV is positive definite.

(1) < LE g = Y then f(po) e iy L8y D --QOIv-i-(pO/v)Gv is singular.

r
For any nonzero column vector x, let g'{Dr-va-f(p/v)Gv}ﬁ = glp : x).
Then g(p : X) is continuous linear function on p and, from (i), g(p : x)
> 0 for p < fg- Thus, g(QO: X) 2 0 for any nonzero vector X. Therefore,
Dr— pOIv-f—(pO/v)Gv is positive semidefinite.

(iii) Since Dr— poIv-*-(po/v)GV is singular, there exists a nonzero
column vector x such that {Dr-polvi-(po/v)Gv}i = 0. In this case,

we get

x'{D - oI + (p/Vv)G }Ix

]

x' (D, = pgI,+ (pg/VIG I+ (pg = ) x' (I, = (1/V)G }x

Il

(po -p)x' {Iv - (l/V)Gv}5

I

- (]
(g =e)x"{(1/py)D }x <0,
since p > Po+ Therefore, Dr-—va-%(o/v)GV is not positive semidefinite.

Proof of Theorem 2.2.2. From the C-matrix of the design, Dr--oIv

+ (p/v)Gv = ND;lN' is positive semidefinite. Hence Proposition 2.2.1

completes the proof.

We also give examples showing the goodness of respective upper

bounds in Theorems 2.2.1 and 2.2.2.

- 13 -




T

Example 2.1. Consider a BB design with parameters v = 5, b = 8, #

r; =4 or 8, kj = 3, whose incidence matrix is given by :

COoOOrFN
oo ON
OO ON
HFOOON
(= S ol i ]
OO
R OO
PO S

v

3

o}

a

Il

—~

—

|

Lﬂc[}}—-‘

In this case, p

A

(rl+-r2)/2, p < [v/(v—l)]rl[l-l/(max kj)] and p < o0

imply p £ 4, p < 10/3 and p < 4, respectively. Thus, min r, = 0g-

Example 2.2. Consider an example described before Theorem 2.2.1.

For this case, p < (rl-rrz)/z, p 2 [v/(v—l)]rl[l-l/(max kj)] and p

A

imply o £ 13/2, o <5 and p £ 54/11, respectively.
For a notation of Proposition 2.2.1l, we have pél)

and o %) o {(v—l)(rl+-r2) = /Qv—l)z(rl-rr

= {v/(v-1)}ry

o 2-;4rlr2v(v—2)}/2(v—2)

2)

2)2+4rlr2}/2(v—-2). Hence

= {(v—l)(rl-Frz) = /2v—1)2(rl-r

24-4r 2

- N T
(v l)(rl-Frz) viEu=15) (rl r2) 155 -

A

P
2 2 (v-2)

Furthermore, it can be easily shown that

2 -
+4rlr2 114-r2 !

2(v=2) 2

(v—l)(rl—+r2) - /Qv—l)z(rl-rz)

A

which implies that Py 2 (rl+-r2)/2. Thus, Theorem 2.2.2 gives a

partial improvement of Theorem 2.2.1.

Corollary 2.2.2. For an n-ary BB design with parameters v, b, L.,

K. (1 = L,2,*¢s v § = 1,2,v¢+ B} in which € = p{

- (l/v)Gv} such »

Ly




(v—l)(rl4-r2) - /Qv—l)z(rl-r2)2-+4r T,

=2

©
A

2(v-2)
holds.

Note that if ry = Iy, Corollary 2.2.2 yields p < min r, (= rl).

We now compare the value,po,with an interesting value)min r;.

The result of this comparison will be used later.

Lemma 2.2.3. For ann-ary BB design with parameters v, b, T kj

(i = 1,2 0,5 g =0, 2 el b
min r; £ P9

where o is the least positive root of f(p) in (2.8).

Proof. Assume, without loss of generality, that K Xy 8 »ox £ ¥
Now, consider the following matrix for any e such that 0 < ¢ < r-
D, = (x; = €)I_ # {(rl--e)/v}GV

= diag{e,ry-ryte, ++,r -rte} + {(r; -e)/viG, ,

in which case diag{e,ry-r +e,**+,r —rl+c} is positive definite and

A | v

{(rl—e)/v}Gv is positive semidefinite. Thus, Dr-(rl-c)IV+{(rl—£)/v;G

is positive definite. Hence, from Proposition 2.2.1, we obtain Py

I

> ry-e. Since e is arbitrary (0 < g < rl), Pg 2 ¥y = min r, .

v




2.3. Conditions for Fisher's inequality
We here consider bounds on the number of blocks in a BB design.
=
Theorem 2.3.1. In an n-ary BB design with parameters v, b, T4
1,2,+++,b) in which € = p{Iv-(l/v)Gv}, 3

= L,2yrv 5% 3

k. (1
J
p < pgs, then b > v holds, where Po is the least positive root of £(p)
in (2.8) .
Proof. From (i) of groposition 21, E o © Y then Dr-—pIV
+ (p/v)GV (= ND;lN') is positive definite. Hence v = rank ND;lN'
= rank N < b. %
In Lemma 2.2.3, we have min r; £ 0q- This fact together with
Theorem 2.3.1 implies
For an n-ary BB design with parameters v, b, ri

= D{Iv-(l/v)GV}, if

Coxolllary 23k
1,2,°=+,b) in which C

and ky (i =1,2,%%,v; j =

p < min X then b > v holds.
is attained,

Note that if there exists only one i such that min r,

then the sufficient condition for Fisher's inequality to be valid can

be improved to p 2 min r,
< min r, holds

if v > max kj' then p <

FrEom (11) of Corollary 2.2.1,

and hence we have
For an n-ary BB design with parameters v, b, r
= o{I, - (1/VIG}, if

Corollary 2.3.2.
and kj G = 1,2,°“,w; J = L;2,v*%,b) 1in which C

> v NoLaS.s

v > max kj, then b




As a characterization of a special case in which the bound of

Corollary 2.1.2 is attainable, we have

Theorem 2.3.2. A binary BB design N with parameters v, b, Xy and
ky (22) (4 =1,2,0"+,v; 3 =1,2,°°*,b) and C = {1 - (1/V)G } satisfies

p = min r, if and only if "the design is a complete block design (i.e.,

= Ev><b)'

Proof. It is obvious that the sufficiency part is valid. We then

consider only the necessity part. For the C-matrix of a binary BB

. : |
design N such that Ty s r, B T when p = ry (= min ri), we have "
ND"lN' =D_ - pI_+ (p/V)G
k r v v "
B S v G
v v v
_ | P -
i R S
. . 0 = in. .l , say,
. 0 . v 1]
. V . -
N P | 3
L ;; rv-p+-\7 |
for i, J = L;2;%°" V. Since Myg = Myy = *°° =my (= p/v), we get
n,,(l-n..) Nysll=n,.) i O (3 s o | |
(2.11) P Tl W Sl PR - i - YN S A
kl k2 kb =

Since b > ry, we can further assume, without loss of generality, that

(2.12) nll = fy. = ¢ve = =1 and

n = es¢ = n = 0. .
1 . lrl+l 1b




Relations (2.11) and (2.12) imply

= = ese = = a y = 2 3, 00 N
n;q n; o n, 1 for all a 2. 3, o
Thus,
' 0 0 eee
N = | E g oy (= [Nl :N,1, say),

T SR,

the C-matrix of which is given by C = Cl-kcz, where Ci's (i = 1,2) are
= 3 ' = = = =
the C-matrices of N,'s. Here, C cy rl{IV (l/v)GV} énd then C, = 0.

Hence, from Lemma A, N2 cannot happen for this design N. Thus, we

must have ry = b and then N = vab.

)

Remark 2.7. From a method of proving Theorem 2.3.2, we can also
deduce that a binary BB design with parameters v, b, rio kj L = 1,2,
ses ¥y 3 = 1,2,°*+,b) and with C = p{Iv— (l/v)GV} satisfies p = r;
for some i if and only if the design is a complete block design.
Furthermore, note (cf. [4]) that in an n-ary BB design N with parameters
Vg 0, £ anag kj (1 =l 2 e b and Wi e C = p(Iv-(l/v)Gv}, o ="t holds

if and only if each row of N is equal.

R |

As seen from Remark 2.7, a BB design is usually considered in the
following case, aside from trivialities: (L) o X r, for all i in a | 4

binary BB design. (ii) p < r in an n-ary equireplicated BB design.

From Corollaries 2.1.2 and 2.3.l1, and Theorem 2.3.2, we obtain

an useful result:

Corollary 2.3.3. For a binary BB design with parameters v, b, T,

kj (2 2) (1 = 1,2,°°°,v; ] = 1,2,+++,b) which is not of type Ev

b 2 Vv holds.

xb'!




Incidentally, as more general bounds on the number of blocks

which are different from Fisher's inequality, we can get

Theorem 2.3.3. For a binary BB design with parameters v, b, r,
= v S b
kj and n = zi=lri = Timpkse
il " . 5 1 A
" ( " max qu(nin r.)v<bg<n (L HIH—Ef)(max ri)v .
] j
Furthermore, if the design is equireplicated (i.e., ry = ¢+ =r =1, -~
say) , then -
r T
(max kj)v = (min kj)V 3 N

Proof. From a comparison of the i-th diagonal element of the

il

C-matrix (= Dr-ND; N' = p{IV-(l/V)GV}) of a binary BB design with

parameters v, b, r., kj and p = (n-b)/(v-1),

2 2 .
I i
i = ( L boeee 4+ lb) = for all 1 = 1
i kl kb v =
L+€y
n2 rl2
(2.13) ¥, e B0 JER ey g adB e 39 v
i v kl kb

Relation (2.13) can be evaluated in two ways. First,

n.., + -+ + n,
# s D 01l ib

v mak k.
]

i
n=p n .

B . —
v max k., ‘
J

which yields (min ri){]-]/(max kj)} (n-b) /v. Hence we have

v




b>n - {1-1/(max kj)}(min ri)v
When rl P ¥ AN B = r, say, we also have ! 4

b > {r/(max kj)}v ,

since n

]
<
at
2
o
S
ot

+o-o+n_
n-b il ib
. : ~
1= v min k.
L)
¥
o n=b 1
v minlks °

Similarly, we can get
b £ 8~ {1=1/(min kj)}(max ri)v 5
v

When ry =r, =*++ =r =r, say, we also have b ¢ {r/(min kj)}v.

The last bound of Theorem 2.3.3 is cebvious, but combinatorially

|

interesting. Note that Theorem 2.3.3 still holds for a binary partially
balanced block (PBB) design (see [7] for the definition of a PBB

design) .

Our sincerest thanks are due to Professor A. Hedayat, University

of Illinois, for his critical reading of our first draft.
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